ICAPipe#
- class sleepeegpy.pipeline.ICAPipe(prec_pipe=None, path_to_eeg='', output_dir='', method='fastica', n_components=None, fit_params=None, path_to_ica=None, **ica_kwargs)[source]#
Bases:
BasePipe
The ICA pipeline element.
Contains ica fitting, plotting multiple ica plots, selecting ica exclusion components and its application to the raw data. More at
mne.preprocessing.ICA
.Methods:
A wrapper for
mne.preprocessing.ICA.apply()
.High-pass filters (1 Hz) a copy of the mne_raw object and then runs
mne.preprocessing.ICA.fit()
on it.A wrapper for
mne.io.Raw.interpolate_bads()
A wrapper for
mne.io.Raw.plot()
.A wrapper for
mne.preprocessing.ICA.plot_components()
.A wrapper for
mne.preprocessing.ICA.plot_properties()
.A wrapper for
mne.viz.plot_sensors()
with a legend.A wrapper for
mne.preprocessing.ICA.plot_sources()
.A wrapper for
mne.preprocessing.ICA.save()
.A wrapper for
mne.io.Raw.save()
.A wrapper for
mne.io.Raw.set_eeg_reference()
.Attributes:
Instance of
mne.preprocessing.ICA
.Calculates percent of data segments annotated as BAD.
A wrapper for
raw.info["sfreq"]
.Preceding pipe that hands over mne_raw object and output_dir.
Can be any eeg file type supported by
mne.io.read_raw()
.Path to the directory where the output will be saved.
An instanse of
mne.io.Raw
.-
mne_ica:
ICA
[source]# Instance of
mne.preprocessing.ICA
.
- fit(filter_kwargs=None, **fit_kwargs)[source]#
High-pass filters (1 Hz) a copy of the mne_raw object and then runs
mne.preprocessing.ICA.fit()
on it.- Parameters:
filter_args – Arguments passed to
mne.io.Raw.filter()
. Defaults to None.**fit_kwargs – Arguments passed to
mne.preprocessing.ICA.fit()
.
- plot_sources(**kwargs)[source]#
A wrapper for
mne.preprocessing.ICA.plot_sources()
.
- plot_components(save=False, **kwargs)[source]#
A wrapper for
mne.preprocessing.ICA.plot_components()
.
- plot_properties(picks=None, save=False, **kwargs)[source]#
A wrapper for
mne.preprocessing.ICA.plot_properties()
.
- apply(exclude=None, **kwargs)[source]#
A wrapper for
mne.preprocessing.ICA.apply()
.
- save_ica(fname='data-ica.fif', overwrite=False)[source]#
A wrapper for
mne.preprocessing.ICA.save()
.- Parameters:
fname (
str
) – filename for the ica file being saved. Defaults to “data-ica.fif”.overwrite (
bool
) – Whether to overwrite the file. Defaults to False.
- property bad_data_percent[source]#
Calculates percent of data segments annotated as BAD.
- Returns:
percent of bad data spans in raw data
- Return type:
float
- interpolate_bads(**interp_kwargs)[source]#
A wrapper for
mne.io.Raw.interpolate_bads()
- Parameters:
**interp_kwargs – Arguments passed to
mne.io.Raw.interpolate_bads()
.
- plot(save_annotations=False, save_bad_channels=False, overwrite=False, **kwargs)[source]#
A wrapper for
mne.io.Raw.plot()
.- Parameters:
save_annotations (
bool
) – Whether to save annotations as txt. Defaults to False.save_bad_channels (
bool
) – Whether to save bad channels as txt. Defaults to False.overwrite (
bool
) – Whether to overwrite annotations and bad_channels files if exist. Defaults to False.**kwargs – Arguments passed to
mne.io.Raw.plot()
.
- plot_sensors(legend=None, legend_args=None, **kwargs)[source]#
A wrapper for
mne.viz.plot_sensors()
with a legend.- Parameters:
legend (
Iterable
[str
]) – ch_groups names to connect to colors. Defaults to None.legend_args (
dict
) – Arguments passed tomatplotlib.axes.Axes.legend()
. Defaults to None.**kwargs – Arguments passed to
mne.viz.plot_sensors()
.
- save_raw(fname, **kwargs)[source]#
A wrapper for
mne.io.Raw.save()
.- Parameters:
fname (
str
) – Filename for the fif file being saved.**kwargs – Arguments passed to
mne.io.Raw.save()
.
- set_eeg_reference(ref_channels='average', projection=False, **kwargs)[source]#
A wrapper for
mne.io.Raw.set_eeg_reference()
.- Parameters:
ref_channels –
ref_channels
. Defaults to ‘average’.projection –
projection
. Defaults to False.**kwargs – Additional arguments passed to
mne.io.Raw.set_eeg_reference()
.
- property sf[source]#
A wrapper for
raw.info["sfreq"]
.- Returns:
sampling frequency
- Return type:
float
- prec_pipe: Type[BasePipeType]#
Preceding pipe that hands over mne_raw object and output_dir.
- path_to_eeg: Path#
Can be any eeg file type supported by
mne.io.read_raw()
.
- output_dir: Path#
Path to the directory where the output will be saved.
- mne_raw: mne.io.Raw#
An instanse of
mne.io.Raw
.
-
mne_ica: